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Introduction. 
The Schrddinger approach to quantum field theory permits a direct 

study of the vacuum structure through the analysis of the vacuum 

wavefunctionals of the theory. Various properties of this vacuum 

structure should reflect the nature of chiral symmetry breaking, COlOr 

confinement and other nonperturbative features of the Complete theory. 
The Schrodinger approach may also allow the study of vacuum structure 

through the application of variational methods and the use of trial 
wavefunctionals. 

In this talk, I will present some results of Using the SChrddinger 
approach to study quantum chromodynamics in two and four dimensions. 

In two dimensions, QCD can be systematically analysedrfl through the 

use of the large NC expansion where NC is the number of colors. In this 

case, we can study both the vacuum structure and the nature of the 
elementary excitations of the system. In four dimensions, nonperturb- 

ative aspects of the vacuum structure of both the gluon and quark 

wavefunctionals have implications for color confinement and chiral 

Symmetry breaking. 

QCD in Two Dimensions. 
Quantum chromodynamics describes the interactions of colored 

quarks with the color Yang-Mills gauge fields. In two dimensions there 
are no transverse gauge degrees of freedom in the gauge fields, and the 

gauge fields may all be eliminated by an appropriate choice of gauge. 
Indeed, ‘t Hooftrzl used the light-cone gauge to study the spectrum of the 

meson bound states. Much further work was also done within this 
frameworkrsf, on the structure of the scattering amplitudes and many 

other properties of the theory. Here, confinement is not the issue as 

the light-cone gauge produces a confining linear potential in two 
dimensions. However, the light-cone gauge can not easily be used to 
study questions related to the vacuum structure. These questions can 
be analysed by combining the usual coulomb gauge formulation with the 
large NC limit. 

The large NC limit is defined by the formal limit where the gauge 
coupling constant, CXC q g2,/4rf. is taken to zero with the combination, 

cxc’Nc fixed. In this limit, the nonabelian gauge structure dictates that 

the leading contributions are given by planar diagrams with the fewest 
number of internal quark loops. Nonplanar gluon interactions are 
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suppressed by 0( 1 /Nc2) and an internal quark loops by O( I /NC). 
The standard coulomb gauge is speclfed Dy V.A = 0 which ImplIeS 

A = 0 in two dimensions. Hence, the gauge fields generate only the 

usual coulomb potential interactron between the quark fields. These 

interactions are fully contained in the coulomb gauge Hamiltonian 

H = jdx Ya’(ti.V+Bm)Ya + (g2$) ldxldy Joa(x).JOa(x) (-V2)-‘(x,y) 1 I] 

where the color charge density is given by Joa = (I/4)1Y’.hay1. 

In leading NC. this Hamiltonian is of order NC, and the Hartree 
approximation is exact. I will use the best plane-wave ground State 

wavefunctional as a trial vacuum state. Now I expand the quark field in 
terms of particle and antiparticle creation and destruction operators 

using a general plane-wave basis 

Ya(X) = Jdp IUpfp(x)Apa + vpf*p(xB+pa) [21 

where fp(x) = eip’x/(Z7r) I/2 and the two component spinors are given by 

U p = (cos(Bp/2), sin(ep/2)) and vp = (sin(Bp/2. cos(Bp/2)). This 

expansion is parameterized by the chiral angles, BP, with 6~~~ = -BP. 

The trial vacuum state, 1 V>ep, is defined as the state annihilated by the 

particle and antiparticle destruction operators and is a fUnCtiOnal of the 
set of chiral angles, (ep}. This set of chiral angles can be viewed as 

variational parameters for the ground state wavefunctlonal. 

The vacuum energy density is simply computed through normal 
ordering the Hamiltonian using this basis with the result 

Ee = <v ( H 1 v>ep = (N,/2n)( -Jdp [psin(ep) + m-4ep)l 
[31 

l c@+( I /2)ldpldq Lsin2((ep-eq)/2)/(p-q)*l 1 

It is clear there is no explicit coulomb singularity at the point p=q. The 

vacuum state is found by varying the chiral angle, BP, in Eq.131. There iS 
a nontrivial solution for 13~ even in the chiral limit, m=O. In this case 
the solution has the form grven in Fig.[l] where it is compared to the 

naive massless limit and to the normal massive case. It is clear that 

an infrared mass is spontaneously generated for small p, but that this 

mass vanishes quickly at high momenta, consistent with the operator 
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product expansions applied to this system. This mass generation 

signifies the spontaneous breaking of chiral symmetry in the large NC 
limit which can also be seen through the chiral condensate of the mass 
operator, 

<TY >ep = - (Nc/27T) Idp cOS(Dp) [41 

Hence, the massless meson state found by ‘t Hooftr*) must be identified 
as the chiral Goldstone boson. This result is inconsistent with the 

usual no-ordering theorems in two dimensions. However, the condensate 
in Eq.[4] will disappear when loops involving the Goldstone boson are 
included; these contributions are higher order in l/NC but infrared 
divergent in the chiral limit in two dimensions. 

At the minimum for BP,. there are no pair creation terms left in H. 
and the normal ordering produces a single particle energy for the quarks 

and antiquarks. 

Ep = psin(ep) + mcos(ep) + occ.Nc.( 1 /Z)Jdq Ncos(ep-eqWb-d*l 151 

Our solution for the gap equation and the quark self-energy energy can 

also be obtained from the Schwinger-Dyson equations where the inverse 
quark propagator is given by SF-‘(P) = aepe - ilrEpSin(9p) - EpCOS(ep). 
However, it is essential to use the correct i& prescription which may 

require that particles have negative energy at low momentum. This can 

easily be seen from the expression for the particle energy in Eq.151. If 
we use the principle value definition of the COulOmb Singularity, then the 
interaction term can yield a large negative contribution at low energy. 

The quarks are apparently tachyonic or even have negative energy near 
the chiral limit. This result would seem absurd as we would to be able 
to lower the vacuum energy by adding quarks or antiquarks to the vacuum 
state we have already constructed. Indeed, if the usual cluster 

properties were to hold, this would be true. However, this theory has 

confinement because of the linear coulomb potential, and the usual 
cluster properties are not valid. The attempt to lower the vacuum 

energy using states with low momentum quarks and antiquarks Wilt 

result a large, positive interaction energy due to the confining coulomb 
interactions. This prescription is no mistake as I have established the 

vacuum stability directly from a variational calculation. These 
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questions can analysed further by studying the elementary excitations 

which occur above the variational groundstate. 
The elementary excitations are color singlet mesons which are made 

as relativistic quark-antiquark bound states. These states may be 

studied by diagonalizing the O(1) terms in the Hamiltonian, H, of Eq.[31; 

note that the vacuum energy of Eq.131 was O(Nc). For states With a few 
quark and antiquark pairs added to the leading NC vacuum state, the 0( I ) 

terms in the Hamiltonian are given by the single particle energies of 

Eq.[S] and certain terms extracted from the normal ordered four body 

coulomb interaction. 1 will study these terms using a large NC bOSOn- 

ization of QCD which is valid to this order in the large NC expansion. 
The coulomb interactions can all be expressed in terms of certain color 

singlet fermion bilinears which are normalized according to our large NC 
analysis. They include meson operators, 

C(k,q) : Bqa.&a/(Nc)“2, C+(k,q) = A+ak.Btqa/(Nc)“2, 161 

and number operators, NA(k.q) = A+ak.Aqa. NB(k.q) = B+ka.Bqa. Acting 

on states with a few quark and antiquark pairs added to the leading NC 

vacuum, the meson operators create and destroy properly normalized 

color singlet pairs, and the number operators have matrix elements of 

O(1). In the large NC limit these meson operators become canonical 
boson operators with commutation relations, 

[C(k,q), C+(k’,q’)] = S(k-k’)G(q-q’) + 0( I IN,) 

In evaluating the normal-ordered coulomb interactions, the O(1) terms 
are only those which involve the meson operators, 

V = (g*,/Z) JdxJdy :Joa(x).Joa(x): (-V*)-‘(x,y) 
181 

= -c<cNc Jdp’Jdp Jdq’Jdq 

( ~(p’+q’-p-q)~c+(p’.q’)c(p.q)~lcos((ep~-ep)/2)~cos((eq~-eq)~2)~(P’-P)*l 

tS(p’cq’+p+q),c(p’.q’)c(q.p).lsin((ep p ,+e )/2)ein((eq~+eq)/2)/(p’+p)*l I 
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+ 0(1/N,) 

The potential terms are quadratic in the canonical boson operators. The 
kinetic energy remains quadratic in the fermion operators, 

Hof = Jdp Ep Atap.Apa + Jdp Ep Btpa.Bpa 191 

I can now use a trick to replace the fermion kinetic energy by a boson 

kinetic energy which is equivalent to this order in the NC expansion. 
The boson kinetic energy, 

Heb = Jdp’Jdp (Ep,+Ep) C’(P’,P)C(P’,P) 1101 

has exactly the same matrix elements for color singlet meson states as 
the fermion operator in Eq.191. 

The full Hamiltonian, H = Hob + V, is now a quadratic form in 

Canonical bOSOn operators and may be diagonalized by a bOSOn Bogoliubov 
transformation of the form, 

C(P,q) q In I ~n(P,qMn(P+q) + Bn(p,qWn(-P-q) I (111 

where n labels the meson bound states and {%(p,q), l$-,(p,q)) are the 
bound state meson wavefunctions. The confining coulomb potential 
produces an approximately linear spectrum of meson bound states as 

found by ‘t Hooftt21 in the light-cone gauge. The COUlOmb singularity 
observed in the single particle energy of Eq.[S] contributes to the boson 

kinetic energy operator but is precisely cancelled by a similar term in 

the potential operator of Eq.[8] which comes from the p”p limit of the 

C+W.q’)CW term. This is expected since there can be no infrared 
divergent coulomb singularity generated by adding color singlet 

quark-antiquark pairs to an otherwise stable vacuum. It was only the 
artificial separation of the kinetic and potential terms which seemed to 

produce the coulomb singluarity. This separation does not have any 
meaning in a confining theory where the quarks do not share a cluster 

property. It is an interesting feature of this calculation that the 

lowest energy bound state is massless in the chiral limit, m+O. For a 
system with a linear, confining interaction potential there mUSt be a 
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positive binding energy for the meson states. Hence, a massless bound 
state can be achieved only if the klnetlc energy has a negatlve 
expectation value in the bound state; this is consistent with our 

observation of the behavior of the single particle quark energy, Ep, near 
the chiral limit. 

The boson Hamiltonian derived above implies a Set of bound State 
equations for the meson wavefunctions. Although the mesons are 

quark-antiquark bound states, the physical amplitudes mUSt include 

mesons which go both forward and backward in time. In other words 

the boson Bogoliubov transformation used to diagonalize the Hamiltonian 

introduces boson pairs into the meson states as well as into the vacuum. 
The vacuum boson pairs produce nontrivial four-quark condensates in 

addition to the two-quark condensates already found by the leading NC 
calculation. It is easily shown that the bound state equations greatly 
simplify in the infinite momentum frame where pair creation is 

suppressed and the simple bound state Schrddinger equations of ‘t Hooft 

are recovered. 

I have noted that the solution exhibits spontaneously broken chiral 
symmetry which is inconsistent in two dimensions. I have calculated 
the chiral condensate, <+#>, and found the massless Goldstone boson in 

the bound state spectrum. These features are expected in the large NC 

expansion which suppresses the boundstate Goldstone boson fluctuations 
as their effective couplings should be O(1/(Nc/2fi)1/Z). However, the 
infrared flucuations of the Goldstone field in two dimensions will 

compensate this suppression for finite N,, and the two-quark chiral 
condensates will be expected to vanish. Of course, this means that 
there must be many quark-antiquark pairs in the vacuum, and our 
bosonization assumptions are not quite correct. However, I expect the 

pairs are only those associated with the Goldstone boson bound state, 

and the calculation of the heavy meson states Will be unaffected. 
I have used the regular coulomb gauge to study the vacuum structure 

and the elementary excitations of QCD in two dimensions. I have 
systematically diagonalized the QCD Hamiltonian using the large NC 

expansion. In leading NC. I have computed the vacuum wavefunctional 
for QCD and have shown it to be equivalent to a variational calculation 
of the vacuum structure. In this order there exists a stable ground 
state with a nontrivial chiral structure. In next order in the NC 
expansion I have studied the elementary exicitations of the ‘system 
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which are the color singlet meson bound states. I have demonstrated 

that a complete bosonization of QCD can be achieved using the large Nc 
limit. I have also shown how this bosonization leads directly to a dual 
meson description of QCD. The massless meson state discovered by ‘t 

Hooft should be seen as the Goldstone boson of the spontaneous chiral 
symmetry breaking which appears in the theory although the chiral 
condensates must disappear when the Goldstone flucuations are included. 

This calculation complements the usual light-cone gauge calculation 

where it is difficult to directly determine information on vacuum 
structure. 

QCD in Four Dimensions: Gluons 
The perturbative treatment of quantum field theory is usually 

described in terms of an oscillator, or particle, basis for the quantum 
fields. Feynmanr41 has emphasized the relevant features of the ground 

state wavefunctional for qualitative questions such as confinement and 

chiral symmetry breaking. I will look at properties of the vacuum 

wavefunctional that have an impact on the valence gluon structure. 

In pure photodynamics, the Hamiltonian is given by 

H = (I /2) Jdx ( E*(x) + B2(x) 1 II21 

where the magnetic field is given by B(x) = &A(x) and &x(x) and f(x) are 

canonical variables The exact vacuum state can be represented in 

terms of the 5chr6dinger wavefuncional, 

@@I = exp ( - (114)JdxJdy B(x)%!(y) U-y) ) [I31 

where the correlation function is A(x-y) = 1/2~r~(x-y)~. This gauge 

invariant, gaussian wavefuncional describes massless. transverse 
photons. 

In the Schrddinger picture of QCD, the vacuum wavefunctional should 
preserve the nonabelian gauge invariance and reduce to the perturbative 

gluon theory at short distance. A simple extension of the PhOtOdynamiC 

wavefunctional would yield, 

@(&) = exP ( - (I 14) Jdx Jdy Bak(X).sabkl(X,Y,A),6bl(y) A(x-y) ) [I41 



where the nonabelian magnetic field is given by fia(x) = &3(x) + 
igfabcAb(x)xAc(x) and Sabkl(x.y.A) is an octet string operator. I 
reinterpret this wavefunction as a transformation from a supervacuum 
state to the physical ground state. 

O(e) = exp 1 - (1/4)JdxJdy Bak(X).SabkI(X.Y.A).BbI(Y) A(x-y) ) a0 (151 

where Oe is the supervacuum state with Ea(x)@u = 0. The exponential 
represents the transformation which puts octet strings into the vacuum 
wavefunctional where A(x-y) is the weight for the strings of length 

(x-y)*. In perturbation theory, A(x-y) is the same as the photon theory 
with logarithmic corrections and determines the long range correlations 

in the wavefunctional, A(x-y) 2 l/25r2(x-y)2 

For a confining vacuum, we expect no long range correlations in the 
wavefunctional, and A(x-y) should be damped. Hence, there are no long 

strings in the vacuum; the short strings are required to reproduce 

perturbative CCD at short distance. The infrared components of the 
electric field are expected to annihilate the vacuum state, fa(x)l&$) = 

0. In principle, I could use the wavefunctional in Eq.Il51 as a 
variational trial state and determine A(x-y) by a variational principle. 

There are severe difficulties in calculating matrix elements due to the 

functional measure of the A(x) integrals as well as gauge problems, etc. 
Some of these problems could be solved through a lattice formulation Of 

the variational problem. 

Instead we will consider a quasi-perturbative approach which 
assumes the approximate validity of a vacuum wavefunctional with a 
damped correlation function, ie. A(x-y) q exp(-p / x-y 1 )/2x2(x-y)*. Then, 
we compute using effective gluon degrees of freedom, ie. an harmonic 

oscillator approximation. The ground state is characterized by a Set Of 
oscillator frequencies for the gluons, Uk = k2.A(k). The infrared 

singlularity of the perturbative form of A(k) produces the usual linear 

dispersion relation, tik = ./P The damped correlation function is not 
infrared singular and gives a quadratic behaviour at low momenta, Wk = 

k2.A(0). The precise form of the damping is not essential. This 
behavior is not that of normal massive gluon which would produce, Ok = 
@ii?-. Instead, the gluon appears as a nonrelativistic, massive 
particle but With no mass gap. This behaviour is consistent with a 
confinement picture where the quadratic behaviour could enhance 
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infrared attraction of gluon exchange interactions instead of the USUal 
screening behavior of massive gluons. In color singlet boundstates. the 
gluons will be dynamically massive and the positive binding energy of 

the confining interactions will produce a positive rest mass for the 
glueball boundstates. This should be contrasted with the quark picture 
discussed for QCDe where the negative quark kinetic energy was seen to 
produce the massless Goldstone boson state. 

While some aspects of this picture of gluons are clearly a property 
of the coulomb gauge formulation, it may give a useful representation of 

the confining vacuum structure which affects the nature of valence 
gluons in boundstates. In principle, we could use the wavefunctions of 

Eq.[l4,151 as a basis of a variational calculation to determine the 
correlation function, A(x). The long range correlations are expected to 
be trivial while the short range correlations are those of perturbative 
QCD. Although the vacuum wavefunctional may be simple, an accurate 

representation of the gauge field measure is needed to compute matrix 
elements. This measure is difficult to formulate in the continuum and 

VariOUS lattice formulations of the measure are discussed in Other 

contributions to this workshop. 

QCD in Four Dimensions: Quarks 
A similar analysis of fermion structure is pOSSible but complicated 

by the expected nature of long range correlations and the requirement of 
gauge invariance. We may proceed to represent the fermion vacuum 
wavefunctional as a transformation from a supervacuum state to the 

physical ground state. The supervacuum state should contain the 
correct long range correlations, and a transformation should be used to 

generate the proper short range correlations of perturbative QCD. 
Gauge invariance must be preserved in the process. 

An approximate supervacuum state can be written as the product of 
the trivial gluon wavefunction, Ogo = I, and a fermion wavefunction @fe. 

To satisfy the gauss law constraint of gauge invariance, the fermion 
wavefunction must be an eigenstate of the local color charge density 

operator, Joa( 

G(x)‘@0 = (D-E(x)+Joa(x))Ogo-~fo = @go (Joa(x)}@fo q 0 

The long range correlations dictate the particular solution for @fo. For 
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the case of spontaneously broken chiral symmetry, a solution like that of 
QCDe is required, and the fermion vacuum should correspond to that or an 
infinitely heavy free quark with A(x)@fo = 6(x)&f,-, = 0 where A(x) and 
B’(x) are, respectively, the upper and lower components of the quark 

field. For a free massive quark, this state must be transformed by an 

appropriate Bogoliubov transformaton to the physical vacuum state. For 

the QCD state, this transformation must be made consistent with gauge 

invariance but preserving the short distance structure of perturbative 
QCD. An approximate fermion trial state would be given by 

‘Df = exp( - Jdx Jdy Yia(X)Tab(x,y,A)o(-Dybb(Y).Af(x-Y) ) @fo [I71 

where Tab(x,y,A) is a color triplet string operator, and Af(x-y) is the 
fermion correlation function. This fermionic transformation ObViOUSly 
generates color triplet strings in the vacuum similar the qlUOniC 

transformation which generated the color octet strings in Eq.Ll51. At 
short distance, the effects of the color strings are not expected to be 
important, and the correlation function must be Chosen to produce the 

correct current quark masses. At long distance, the correlation 
function, A&x-y), will be damped as in the gluonic case and long Color 

triplet strings will be suppressed in the ground state wavefunctional. 

The incomplete Bogoliubov transformaton has the effect of generating 
the equivalent of a constituent mass for the quarks. From this view, 
four dimensional quark structure is quite similar to the picture of chiral 

symmetry breaking found in QCD2. As in QCD2, the long distance chiral 
structure given in Eq.1171 is incomplete as the direct effects of the 
Goldstone bosons have been neglected. Hence, a qualitative picture of 
the valence quark and gluon structure can be obtained from the 

knowledge of the QCD groundstate wavefunctional without detailed 
solutions. However, the problem of using these wavefunctionals 
remains a challenge due to measure problems associated with the gauge 

field integrations in the continuum theory. 

Conclusions. 
I have shown how the large NC expansion can be used to obtain a 

systematic solution of QCD in two dimensions. The gauge interactions 

produce a nontrivial chiral structure in the groundstate waVefUnCtiOnal 
when analysed in leading order in the NC expansion. By diagOnaIiZing 
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the Hamiltonian in next order in the NC expansion, the dynamical 

equations for the complete set of meson bound states are obtained. The 
large NC limit permits a systematic bosonization of the quark theory and 
produces a dual meson theory of QCD. 

A somewhat similar approach was used to analyse the vacuum 
StrUCtUre in four dimensional QCD. Here the trial groundstate 
wavefunctional was given as a transformation from a locally color 

singlet, supervacuum state. The supervacuum state incorporated the 
correct long range correlations of the physical vacuum state. The 

effective “BOgOliUbOv” transformations generated Color Octet anci color 
triplet strings in the vacuum. In perturbation theory, the vacuum 
would include infinitely long strings due to the nature of the correlation 
functions, Ag(x) and Af(x). In the QCD ground state, these long strings 
are expected to be damped, but the short strings are still required to 
produce the perturbative QCD structure at short distance. Hence, we 

may, indeed, have good knowledge of the ground state WaVefUnCtiOnalS in 

this formulation as the wavefunctional are trivial at long distance and 

perturbative at short distance. Unfortunately, to make real use of this 
knowledge of the QCD vacuum wavefunctional requires good knowledge of 

the gauge field integration measure which is presently lacking in the 

continuum formulation of the theory. 
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Figure I, Vacuum chiral angle, BP, for massless and massive 
free fermions and for the dynamically generated chiral angle 
in massless QCD in two dimensions. 


